

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA

PLANO DE CURSO

UNIDADE RESPONSÁVEL
DEMAT
CÓDIGO
14.16

DOCENTES PROPONENTES Mauricio Roberto Bomio Delmonte Fabiana Villela da Motta NOME DO COMPONENTE MTR 0303 - Nanomateriais CARGA HORÁRIA 60 h

CONTEÚDO

Introdução. Histórico da nanotecnologia. Síntese, separação, caracterização e aplicações de: nanotubos de carbono; nanofios; nanocatalisadores, nanocompósitos. Técnicas de caracterização de materiais nanométricos: Microscopia Eletrônica de Transmissão (TEM), Microscopia de força Atômica (AFM). Introdução à ciência e engenharia de superfícies; Química e física de superfícies e métodos de deposição de filmes finos (propriedades, caracterização e aplicações).

METODOLOGIA

A exposição da disciplina será realizada por intermédio dos recursos de ensino disponíveis, priorizando a utilização de exemplos, remetendo, sempre que oportuno utilizando artigos científicos e didáticos para a compreensão dos nanomateriais. As aulas serão ministradas remotamente, via conferência web da RNP ou Google meeting alternadas com atividades de estudo dirigido, relacionadas com os tópicos das aulas remotas. As aulas experimentais serão substituídas por vídeos os experimentos das aulas práticas de laboratório. Estes vídeos podem ser produzidos pelo próprio docente ou retirados da internet. Ao final do curso o aluno deverá ter o conhecimento para identificar as diferentes formas e importância das etapas de síntese, processamento, caracterização e propriedades dos diferentes nanomateriais.

PROCEDIMENTOS DE AVALIAÇÃO DA APRENDIZAGEM

Serão realizadas duas provas via SIGAA (Avaliação 1 e 2). As avaliações serão realizadas no mesmo horário das aulas. As avaliações 1 e 2 terão peso 10 cada uma. A avaliação 3 será realizada por meio de uma apresentação de um seminário de cada discente de um tema definido na primeira semana entre docente e discentes. O aluno deverá enviar após a apresentação o vídeo com a apresentação realizada, via e-mail ou SIGAA, a fim de documentar a realização da Avaliação 3. As datas das apresentações estão definidas no cronograma, sendo que o número de alunos por dia de apresentação será definido após o fechamento das matrículas na turma. A avaliação 3 também terá peso 10.

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA

CRONOGRAMA E CRITÉRIOS PARA A REALIZAÇÃO DAS ATIVIDADES E VALIDAÇÃO DA ASSIDUIDADE

Todas as atividades propostas (provas e exercícios) serão enviadas pelo SIGAA. O discente irá precisar de acesso à internet para acompanhar as aulas e enviar as suas atividades. O discente deve ter 75% de presença nas aulas remotas que serão computadas durante sua participação nas aulas.

Detalhamento dos recursos didáticos a serem utilizados:

Para as aulas remotas será fornecido material didático, tais como: capítulos de livros didáticos escaneados, artigos disponíveis no Portal de Periódicos CAPES ou apostilas (pdf) que abordam o assunto da disciplina. Os links dos vídeos que serão utilizados na aula serão encaminhados pelo SiGAA para que o aluno possa assistir em outros horários. As aulas remotas não serão gravadas e enviadas pelo sistema SiGAA.

CRONOGRAMA

O cronograma do curso está previsto de acordo com período do semestre 2020.3, podendo ter alterações nas datas das atividades durante o curso para se adequar as necessidades dos discentes.

DATA	CONTEÚDO	RECURSOS DIDÁTICOS	
15/06	Apresentação do plano de curso	Aula Remota	
16/06	Introdução da nanotecnologia – Parte 1	Aula Remota	
17/06	Introdução da nanotecnologia – Parte 2	Estudo	
18/06	Nanopartículas – Parte 1	Aula Remota	
19/06	Nanopartículas – Parte 2	Estudo	
22/06	Síntese de nanopartículas: Métodos Químicos – Parte 1	Aula Remota	
23/06	Síntese de nanopartículas: Métodos Químicos – Parte 2	Estudo	
24/06	Síntese de nanopartículas: Métodos Físicos – Parte 1	Aula Remota	
25/06	Síntese de nanopartículas: Métodos Físicos – Parte 2	Estudo	
26/06	Tira dúvidas – Avaliação 1	Aula Remota	
29/06	Avaliação 1 (conteúdo dos dias 16/06 a 25/06)	SIGAA	
30/06	Discussão da avaliação 1	Aula Remota	
01/07	Síntese – Método Sol Gel e Co-precipitação – Parte 1	Estudo	
02/07	Síntese – Método Sol Gel e Co-precipitação – Parte 2	Aula Remota	
03/07	Nanotubos de carbono – Parte 1	Aula Remota	
06/07	Nanotubos de carbono – Parte 2	Estudo	
07/07	Nanocompósitos / Nanocatalisadores – Parte 1	Aula Remota	
08/07	Nanocompósitos / Nanocatalisadores — Parte 2	Estudo	
09/07	Nanopartículas de TiO ₂ e propriedades fotocatalítica	Aula Remota	
10/07	Tira dúvidas – Avaliação 2	Aula Remota	
13/07	Avaliação 2 (conteúdo dos dias 01/07 a 10/07)	SIGAA	
14/07	Caracterização Estrutural (DRX) e composicional (FRX) – Parte 1	Aula Remota	
15/07	Caracterização Estrutural (DRX) e composicional (FRX) – Parte 2	Estudo	
16/07	Caracterização por Microscopia Eletrônica Transmissão (TEM) – Parte 1	Aula Remota	

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA

17/07	Caracterização por Microscopia Eletrônica Transmissão (TEM) – Parte 2	Estudo	
20/07	Caracterização por Microscopia Força Atômica (AFM) – Parte 1	Aula Remota	
21/07	Caracterização por Microscopia Força Atômica (AFM) – Parte 2	Estudo	
22/07	Dúvidas e Preparação do vídeo para avaliação 3	Estudo	
23/07	Apresentação dos discentes (vídeo)	Aula Remota	
24/07	Apresentação dos discentes (vídeo)	Aula Remota	
27/07	Apresentação dos discentes (vídeo)	Aula Remota	
28/07	Avaliação de recuperação (Todo o conteúdo da disciplina)	SIGAA	
29/07	Encerramento e considerações finais	Aula Remota	

HORÁRIOS DE ATENDIMENTO								
2ª	3 <u>ª</u>	4ª	5 <u>ª</u>	6 <u>ª</u>				
	7:50h as 8:40h		7:50h as 8:40h					

REFERÊNCIAS

- Artigos e apostilas disponibilizadas no SIGAA pelo docente
- Site inovação tecnológica https://www.inovacaotecnologica.com.br/index.php
- VARIN, R. A; CZUJKO, Tomasz; WRONSKI, Zbigniew S. Nanomaterials for solid state hydrogen storage. New York: Springer, 2009. x, 338 p. (Fuel cells and hydrogen energy) ISBN: 9780387777115.
- SMART, Lesley; MOORE, Elaine. Solid state chemistry: an introduction. 2. ed. London: Chapman & Hall, 1995. 379p. ISBN: 0412622203.
- DURAN, Nelson; MATTOSO, Luiz Henrique Capparelli; MORAIS, Paulo Cesar de. **Nanotecnologia**: introdução, preparação e caracterização de nanomateriais e exemplos de aplicação. São Paulo: Artliber, c2006. 208p. ISBN: 8588098334
- OHRING, Milton. **Materials science of thin films**: deposition and structure. 2.nd. San Diego: Academic Press, c2002. xxi, 794 p. ISBN: 0125249756.
- CAO, Guozhong. **Nanostructures & nanomaterials**: synthesis, properties & applications. London Hackensack, NJ: Imperial College Press, 2004. xiv, 433 p. ISBN: 1860944809.
- SCHUBERT, U; HÜSING, Nicola. **Synthesis of inorganic materials**. 3nd rev. and updated ed. Weinheim: Wiley-VCH, c2012. xxii, 370 p. ISBN: 3527310371.